When faced with the challenge to store, retrieve and process small or large amounts of data, structured query languages are typically not far away. These languages serve as a nice abstraction between the goal that is to be achieved and how it is actually done. The list of successful applications of this extra layer is long. MySQL users could switch from MyISAM to InnoDB or use new algorithms like Multi-Range-Read without a change to their application. We, as Hive users, can effortlessly switch our complete processing from MapReduce to, say, Tez or Spark. All this is possible because of SQL serving as an abstraction layer in between. However, in this article, I will outline the effects when SQL - specifically hiveQL - misbehaves and which steps we are taking to recover.
Follow us on