Read Real-world Insights: Anomaly Detection in Internet Traffic

Real-world Insights: Anomaly Detection in Internet Traffic

This article is written for individuals in data science or analytics roles who are familiar with terms such as confidence interval, databases, or workflows. It is aimed at those who need to implement anomaly detection techniques for various types of users with different needs. In this article, I will share my experience from working at trivago, with a specific focus on internet traffic. Rather than delving into the details of mathematical models (as there are already many well-covered articles on this topic), I aim to provide insights into real-world situations encompassing a wide range of business needs. These situations require tailored solutions to cater to different types of stakeholders.

Read How we scaled our Prometheus setup

How we scaled our Prometheus setup

In 2020 we started to migrate one of our most significant workloads, our Node.js based GraphQL API and many of its microservices, from our datacenter to Google Kubernetes Engine. We deploy it in three GCP regions, each having its Kubernetes cluster. Since then, our monitoring infrastructure has changed due to various periods of instability and pandemic induced scaling challenges.

Read How To Get Fooled By Metrics

How To Get Fooled By Metrics

Metrics are one of the main building blocks in the topic of observability.

Hence, we have a lot of metrics within our applications and especially for the connections between our applications. Every outgoing request has its latency measured and we also record the sizes of the request and the response. These numbers are collected in histograms and based on that data, in our Grafana graphs, we create corresponding graphs that show us e.g. the median size of request- and response payloads or the 99th percentile of call durations.

Read Better URL Search with Elasticsearch

Better URL Search with Elasticsearch

At trivago, we generate a huge amount of logs and we have our own custom setup for shipping logs using mostly Protocol Buffers. Eventually we end up with some fields in Elasticsearch (ES) that contain partial (or full) URLs. For instance, in our specific case we store the query component of the URL in a field called query and the path component in a field named url_path. Sample values for these fields could be:

Read Nomad - our experiences and best practices

Nomad - our experiences and best practices

Hello from trivago's performance & monitoring team. One important part of our job is to ship more than a terabyte of logs and system metrics per day, from various data sources into elasticsearch, several time series databases and other data sinks. We do so by reading most of the data from multiple Kafka clusters and processing them with nearly 100 Logstashes. Our clusters currently consists of ~30 machines running Debian 7 with bare-metal installations of the aforementioned services. This summer we decided to migrate all of this to an on-premise [Nomad](https://www.nomadproject.io/ cluster) cluster.

Read Introducing Protector - a Circuit Breaker for Time Series Databases

Introducing Protector - a Circuit Breaker for Time Series Databases

At trivago we store a subset of our realtime metric data in InfluxDB and we are quite impressed by the load it can handle. Despite all the joy, we had to learn some lessons the hard way. It is pretty easy to overload the database or the web browser by executing queries that return too many datapoints. To prevent that, we wrote Protector - a circuit breaker for Time series databases that blocks malicious queries.

Read Better Log Parsing with Logstash and Google Protocol Buffers

Better Log Parsing with Logstash and Google Protocol Buffers

At trivago we rely heavily on the ELK stack for our log processing. We stream our webserver access logs, error logs, performance benchmarks and all kind of diagnostic data into Kafka and process it from there into Elasticsearch using Logstash. Our preferred encoding within this pipeline is Google's Protocol Buffers, short protobuf. In this blog post, we will explain with an example how to read protobuf encoded messages from Kafka using Logstash.

Read Elasticsearch and Kibana for Selenium Automation

Elasticsearch and Kibana for Selenium Automation

The advances and growth of our Selenium based automated testing infrastructure generated an unexpected number of test results to evaluate. We had to rethink our reporting systems. Combining the power of Selenium with Kibana's graphing and filtering features totally changed our way of working. Now we have real-time testing feedback and the ability of filtering between thousands of tests, all in one Dashboard.